
Design: File Formats
Version 1.0

October 7, 2011

Dennis Schulmeister
dennis@developer-showcase.de

Contents

1 Internal file formats 3
1.1 Registration files for single registrations 3

1.1.1 Version 1: Keyboard model and registration 3
1.1.2 Version 2: Tree structure and additional meta data 4

2 Registration banks 6
2.1 Yamaha PSR-9000 and 9000pro . 6

2.1.1 General notes . 6
2.1.2 Files created with Load/Save User Data 6
2.1.3 Files created with System Backup 12
2.1.4 Control file DISK.MNG . 16

2.2 Yamaha PSR-2000, PSR-1000, PSR-A1000, PSR-2100 17
2.3 Yamaha Tyros, PSR-3000, PSR-S700, PSR-S710, PSR-S900, PSR-S910 . 22

2

1
Internal file formats

1.1 Registration files for single registrations

1.1.1 Version 1: Keyboard model and registration

Most arranger workstations don’t allow to save single registrations into a file. Instead
registrations are grouped to fixed-size banks which can be saved and loaded. The newer
models save one bank per file but there are still older models which can only save all
banks into one file. The purpose of the PSR Registration Shuffler is to import those files
and extract the single registrations out of them. This way a data pool is built which
can be used to compose new bank files to be loaded into the instrument.

Each extracted registration is stored into a separate file which is totally managed by
the program. The user usually doesn’t use these files directly. The first version of the
file format is very simple as it only contains three fields, including the magic number,
the keyboard model and a binary part with the extracted registration data. The magic
number is checked in order to recognize registration files. The keyboard model is checked
in order to detect the file format of the resulting bank files. The rest of the file contains
just the binary registration data which is copied back into the bank files. Typically the
file extension is *.regfile.

The file structure goes like this:

Position16 Amount Length Content
00 00 00 00 1 4 Magic number: RS01
00 00 00 04 1 16 Keyboard model, e.g. YAMAHA PSR2000.

Unused bytes at the end are filled with 0x00
bytes.

00 00 00 14 1 variable Binary registration data

3

1 Internal file formats 4

1.1.2 Version 2: Tree structure and additional meta data

Version two extends the file format with user-editable meta data. Therefor the content is
organized into a hierarchical tree making great use of block identifiers and length fields.
The new file format looks like this:

Position16 Amount Length Content
00 00 00 00 1 4 Magic number: RS02
00 00 00 04 1 16 Keyboard model, e.g. YAMAHA TYROS1. Un-

used bytes at the end are filled with 0x00
bytes.

00 00 00 14 0–1 variable Optional meta data block
... 1 variable Registration data block

Each block consists of three parts: An identifier, a length field and the block content:

Position16 Amount Length Content
00 00 00 00 1 4 Block identifier. Should be ascii only
00 00 00 04 1 4 Length of the following data
00 00 00 08 1 variable Block data

Depending on the block type the block data may consist of an arbitrary byte sequence
or of more blocks which build up a tree structure. Currently the following block types
are supported:

META Meta Data optional
DESC Description optional
MFLD Meta Data Field optional
FNAM Field Name required
FTXT Field Text required
RGDT Registration Data required

Registration file

META

DESC MFLD

FNAM FTXT

RGDT

As can be seen the Meta Data block may contain an optional Description block and
any number of Meta Data Fields. Each Meta Data Field consists of a Field Name

1 Internal file formats 5

and a Field Text. The Description block contains latin-1 encoded text which may
have line-breaks. The blocks Field Name and Field Text also contain latin-1 encoded
text but without newlines. The Registration block contains the raw binary data of a
registration.

Here is a complete example:

52 53 30 32 59 41 4d 41 48 41 20 39 30 30 30 70 RS02YAMAHA 9000p
72 6f 00 00 4d 45 54 41 00 00 00 1b 44 45 53 43 ro..META....DESC
00 00 00 13 54 68 69 73 20 69 73 20 61 6e 20 65This is an e
78 61 6d 70 6c 65 21 52 47 44 54 00 00 01 d9 50 xample!RGDT....P
75 6e 69 73 68 20 74 68 65 20 6d 6f 6e 6b 65 79 unish the monkey
21 2e 00 40 40 62 70 ... !..@@bp.........

Position16 Amount Length Content
00 00 00 00 1 4 Magic number: RS02
00 00 00 04 1 16 Keyboard model: YAMAHA 9000pro.
00 00 00 14 1 4 Meta Data block: META
00 00 00 18 1 4 Length of meta data: 0x1B
00 00 00 1C 1 4 Description block: DESC
00 00 00 20 1 4 Length of description: 0x13
00 00 00 24 1 19 Description: This is an example!
00 00 00 37 1 477 Registration Data block: RGDT
00 00 00 3B 1 4 Length of registration data: 0x1D9
00 00 00 3F 1 473 Registration data

2
Registration banks

2.1 Yamaha PSR-9000 and 9000pro

2.1.1 General notes

All contents of the Flash ROM (including registration banks) can either be saved to disk
using the Load/Save or the System Backup function. According to the 9000pro manual
all files created with Load/Save can be exchanged between PSR-9000 and 9000pro.
System Backups however don’t allow to share system settings and registrations between
those two models. At the moment no research has been done regarding the differences
between the created files of both instruments.

Unlike following models like the PSR-2000 contents of the Flash ROM are not presented
in an object-oriented directory/file manner. This means that single objects like registra-
tion banks or styles are not treated like files on a disk and thus cannot simply be copied
or moved. Instead a functional approach is used where the Function menu contains
several options in order to perform tasks like "copy from flash to disk" upon numbered
slots within the Flash ROM. (Examples for numbered slots in that sense: Registration
Bank 1–64, Flash Style 1–n, User Voice 1–32, . . .)

All text files use a latin-1 enconding and CR LF as line ends. All numbers are unsigned
integers in big endian order.

2.1.2 Files created with Load/Save User Data

Directory tree and contained files

When user data is saved it is possible to choose which type of data should be saved, e.g. if
only registrations or if registrations and custom voices are to be saved. Acordingly when
this data is loaded it is possible to choose which content should be restored. Though all

6

2 Registration banks 7

registration banks are stored into one single file it is possible to load either all registration
banks (Group) or only selected banks (Individual) back into the instrument.

All contents are stored in a file-system directory which ends in .usr, though it is not
allowed to see the contained files of that directory. Inside that directory there is a control
file called USERFILE.INI and at least one of the following data files for Registrations,
Multi Pads and so on.
Regist.reg Registration Banks
*.vic Custom Voices
*.org Organ Voices
*.pad Multi Pad Banks
*.set Global Settings
*.eff Effect Settings

No error message occurs if a user data directory contains more
than one file with an *.reg extension or if the file isn’t called
Regist.reg. In most cases the instrument tries to load the data
but doesn’t find it.

Control file USERFILE.INI

The text file USERFILE.INI is structured similar to many configuration files in INI
format and describes the content of a backup. The file is written by the instrument but
it’s not needed in order to load a backup as long as the data files reside in a directory
with a *.usr extension.

The general structure of the file goes like this. There are no empty lines inside that file.
Empty lines here are only for readability.

Header
[TITLE]
9000Pro USERFILE.INI
YAMAHA Corporation
[DISK NO]
DISK000
[INSTRUMENT]
9000Pro
[VERSION]
Ver2.06
[TOTAL USER DATA SIZE]
4712KB

Content
...

2 Registration banks 8

Footer
[DATAEND]

The name of the instrument can be found twice. Allowed values are PSR-9000 and
9000pro. The disk number is probably a hexadecimal number which is used if the
backup doesn’t fit to one disk. Interestingly the data size doesn’t exactly fit the total
file sizes. Maybe it is used for display purposes only. Also there is the OS version with
which the backup has been created. It is assumed however that most of these fields are
not used.

Not shown here are the content blocks in the middle of the file. They contain exactly one
block per data type and enumerate all contained files of a backup. This is, all file names
are printed in a numerated list. The only exception to that rule are Registration Banks
which are described like any other file but are not saved into single files. Instead there
is only one file called Regist.reg which contains all banks. Here are some examples,
again there are no empty lines:

[ORGAN FLUTE]
TOTAL FILE NUM:4
1 = DF0001 00.org
2 = DF0002 01.org
3 = DF3 02.org
4 = DF accomp 03.org

[REGISTRATION]
TOTAL FILE NUM:3
1 = A 00.reg
2 = A 01.reg
3 = A 02.reg

[MULTI PAD]
TOTAL FILE NUM:5
1 = Live! Tom 00.pad
2 = Live! Crash 01.pad
3 = Live! Kit 1 02.pad
4 = Live! Kit 2 03.pad
5 = Live! Kit 3 04.pad

[CUSTOM VOICE]
TOTAL FILE NUM:2
1 = Handel Orch 00.vic
2 = DF Lead 1 01.vic

[SETUP]

2 Registration banks 9

TOTAL FILE NUM:1
setup 00.set

[EFFECT]
TOTAL FILE NUM:1
effect 00.eff

Note how file numbers are stored redundant. Each file of a group is numbered consec-
utively at the beginning of each line. However the same number is also stored as part
of the file name. Numbers at the beginning are decimal, numbers in the file name are
hexadecimal. Most file names are exactly 20 chars wide not counting the extension.
Spaces are used to move the file number to the end of each name. More important the
field TOTAL FILE NUM always contains the exact amount of files in a group or in case of
registrations the amount of Registration Banks.

Binary file Regist.reg

Unlike the other file types registration banks are not stored individually in *.reg files
even if USERFILE.INI suggests that. This simplification hasn’t been introduced to the
firmware before the next model, the PSR-2000. Prior to that all registration banks were
saved into a single file called Regist.reg. The general layout is quite simple:

Position16 Amount Length Content
00 00 00 00 64 48 Index of all contained registration banks.

This is always 3072 bytes long and 0x00
bytes are used to fill the list if it is shorter.
Entries can be in any order but there can be
no gaps between them.

00 00 0C 00 1 16 Padding
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 0C 10 Up to 64 variable Registration banks

Index entries have the following layout. However the very first two bytes must always
be 0xD0 06 even if the first bank is missing.

Position16 Amount Length Content
00 00 00 00 1 16 Header of the first entry:

D0 06 00 00 00 00 00 00
00 00 00 00 00 00 00 00
Header of all other entries:
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

2 Registration banks 10

Position16 Amount Length Content
00 00 00 10 1 4 Size of registration bank, e.g. 0x12 68
00 00 00 14 1 4 Absolute position of the bank within the file.

The position is off by 0x10 which must be
added in order to find the bank.

00 00 00 18 1 1 Bank number from 0 to 63.
00 00 00 19 1 22 Bank name. The name always ends in .reg.

Spaces 0x20 are used to move the extension
to the very end. Otherwise a zero byte indi-
cates the end of the string.

00 00 00 2F 1 1 Final 0x00 byte.

Each bank has the following structure:

Position16 Amount Length Content
00 00 00 00 1 16 Bank name. Filled with 0x00 or spaces at

the end
00 00 00 10 1 32 Identification string. Padded with spaces

0x20 at the end:
PSR-9000PREGIST Ver1.00

00 00 00 30 0–8 583 Registrations

The registrations seem to follow a flat structure instead of a hierarchical tree. They have
the following structure:

Position16 Amount Length Content
00 00 00 00 1 6 Identification string: REG000, . . ., REG007
00 00 00 06 1 4 Length of the following data: 0x00 00 02 3D

Add 10 in order to get the complete length
of the bank including all fields.

00 00 00 0A 1 6 Unknown: 0x08 01 00 00 00 00
00 00 00 10 1 16 Registration name. A zero byte indicates

the end if less than 16 characters are used.
The other bytes may then contain garbage.

00 00 00 10 1 573 Other registration data

Empty or missing registrations may either be all zero or may be missing. If they are
missing the bank size changes accordingly. However neither way is a good idea because
the firmware doesn’t support missing registrations like the newer models do. A missing
registration can still be called like any other registration but all settings are zeroed, then.
This is, all volumes are zero, all pan-levels are zero, touch response of all voices is off and
even the master scale is set to Arabic tuning. Many settings have to be changed to make
the instrument sound right again. A better solution is to save a registration with sane
default settings, like Yamaha does with the factory backup disk. Such a registration

2 Registration banks 11

would basically contain the initial settings which are active after powering the arranger
on but with all panel voices off.

Here is an example for PSR-9000:

52 45 47 30 30 30 00 00 02 3d 08 01 00 00 00 00 REG000...=......
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
00 00 00 08 03 36 00 78 00 00 52 ff 00 64 5a 666.x..R..dZf
2d 48 26 2e 32 00 40 40 40 2a 58 40 4c 3a 00 14 -H&.2.@@@*X@L:..
20 00 28 32 3c 26 00 00 00 00 12 22 40 00 2e 00 .(2<&....."@...
00 00 00 00 00 14 00 1e 7f 00 7f 00 7d 7f 00 7d}..}
00 70 21 00 71 19 00 74 1b 00 70 30 00 76 1b 00 .p!.q..t..p0.v..
70 12 00 00 03 00 0a 00 00 70 00 00 6e 64 40 00 p........p..nd@.
00 24 02 00 40 00 00 00 00 75 31 00 6e 64 40 00 .$..@....u1.nd@.
00 24 02 00 40 00 00 00 00 72 04 00 6e 64 40 18 .$..@....r..nd@.
00 24 02 00 40 00 00 01 40 00 07 00 00 00 00 07 .$..@...@.......
07 07 00 00 00 00 00 01 10 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 40 42 08 00 00 00@B....
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 40@
00 00 00 00 00 00 00 00 00 03 11 00 24 00 01 11$...
01 2e 00 42 10 02 22 7f 46 40 26 00 15 00 1e 04 ...B..".F@&.....
59 00 10 00 00 40 00 00 00 00 40 40 40 40 40 40 Y....@....@@@@@@
40 40 40 40 40 40 00 00 05 07 0f 02 00 01 48 00 @@@@@@........H.
2a 32 40 40 40 40 40 40 00 40 40 40 42 3c 40 3a *2@@@@@@.@@@B<@:
40 00 40 40 40 40 3a 2c 3e 40 00 40 40 40 40 40 @.@@@@:,>@.@@@@@
40 40 40 00 40 40 40 40 40 40 40 40 00 01 00 00 @@@.@@@@@@@@....
00 12 40 40 44 40 7f 00 01 00 00 00 7f 00 00 00 ..@@D@..........
00 40 40 40 40 00 00 00 22 40 40 40 40 00 00 76 .@@@@..."@@@@..v
12 00 00 64 40 1c 00 7f 02 00 40 00 ff 00 00 00 ...d@.....@.....
00 40 40 28 40 01 01 01 7f 7f 7f 00 63 01 7f 00 .@@(@.......c...
00 00 00 01 7f 01 00 00 00 00 00 30 ff 00 07 000....
31 64 05 0f 00 24 64 5f 00 01 07 52 40 40 40 40 1d...$d_...R@@@@
40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 @...............
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 8f 00 00 00 8f 00 00 00 00 00 00
00 ff 00 00 00 ff 00 00 00 ff 00 00 00 ff 00 00
00 03 00 00 00 00 00 4e 00 00 00 00 00 00 00 00N........
00 a9 00 29 00 00 00 00 00 00 00 00 7f 7f 00 00 ...)............
80 b7 b6 80 00 c0 00

Here is an example for 9000pro. This changes the GrandPiano voice to Live!Grand:

2 Registration banks 12

52 45 47 30 30 30 00 00 02 3d 08 01 00 00 00 00 REG000...=......
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
00 00 00 08 03 36 00 78 00 00 52 ff 00 64 5a 666.x..R..dZf
2d 48 26 2e 32 00 40 40 40 2a 58 40 4c 3a 00 14 -H&.2.@@@*X@L:..
20 00 28 32 3c 26 00 00 00 00 12 22 40 00 2e 00 .(2<&....."@...
00 00 00 00 00 14 00 1e 7f 00 7f 00 7d 7f 00 7d}..}
00 70 21 00 71 19 00 74 1b 00 70 30 00 76 1b 00 .p!.q..t..p0.v..
70 12 00 00 03 00 0a 00 00 71 00 00 6e 64 40 00 p........q..nd@.
00 24 02 00 40 00 00 00 00 75 31 00 6e 64 40 00 .$..@....u1.nd@.
00 24 02 00 40 00 00 00 00 72 04 00 6e 64 40 18 .$..@....r..nd@.
00 24 02 00 40 00 00 01 40 00 07 00 00 00 00 07 .$..@...@.......
07 07 00 00 00 00 00 01 10 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 40 42 08 00 00 00@B....
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 40@
00 00 00 00 00 00 00 00 00 03 11 00 22 00 01 11"...
01 2e 00 42 10 02 22 7f 46 40 26 00 15 00 1e 04 ...B..".F@&.....
59 00 10 00 00 40 00 00 00 00 40 40 40 40 40 40 Y....@....@@@@@@
40 40 40 40 40 40 00 00 05 07 0f 02 00 01 48 00 @@@@@@........H.
2a 32 40 40 40 40 40 40 00 40 40 40 42 3c 40 3a *2@@@@@@.@@@B<@:
40 00 40 40 40 40 3a 2c 3e 40 00 40 40 40 40 40 @.@@@@:,>@.@@@@@
40 40 40 00 40 40 40 40 40 40 40 40 00 01 00 00 @@@.@@@@@@@@....
00 12 40 40 44 40 7f 00 01 00 00 00 7f 00 00 00 ..@@D@..........
00 40 40 6c 60 00 00 00 22 40 40 40 40 00 00 76 .@@l‘..."@@@@..v
12 00 00 64 40 1c 00 7f 02 00 40 00 ff 00 00 00 ...d@.....@.....
00 40 40 28 40 01 01 01 7f 7f 7f 00 63 01 7f 00 .@@(@.......c...
00 00 00 01 7f 01 00 00 00 00 00 30 ff 00 07 000....
31 64 05 0f 00 24 64 5f 00 01 07 52 40 40 40 40 1d...$d_...R@@@@
40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 @...............
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 8f 00 00 00 8f 00 00 00 00 00 00
00 ff 00 00 00 ff 00 00 00 ff 00 00 00 ff 00 00
00 03 00 00 00 00 00 4e 00 00 00 00 00 00 00 00N........
00 a9 00 29 00 00 00 00 00 00 00 00 7f 7f 00 00 ...)............
80 b7 b6 80 00 c0 00

2.1.3 Files created with System Backup

Directory tree and contained files

Each backup is stored to one ore more disks and each floppy disk may not contain
more than one backup. For that reason each disk contains a folder called Setup.bXX

2 Registration banks 13

where XX is the hexadecimal disk number. If a backup fits to one disk there is only one
directory called Setup.b01. If it takes two disks the directories are called Setup.b01
and Setup.b02 and so on.

Similar to user data each backup is stored inside a directory whose name ends in .buf
and the contents of that directory cannot be seen on the instrument. If a backup is saved
to disk it may be splitted to two disks. In that case the extension changes to *.b01
for the first disk and *.b02 for the second disk. In order to prevent mistakes the file
listings of the backup function don’t show directories with other extensions than *.buf
and *.b01.

Each of these directories contains a control file called BACKUP.INI which is really needed
in order to load the backup. Additionally at least one of the following data files must
be present:

STY.b01, STY.bFF Flash Styles
SUP.bup Global Setup
MDB.bup Music Database
MPD.bup Multi Pads
OTS.bup One Touch Settings
REG.bup Registration Banks

If the control file is missing the instrument refuses to open the backup directory. If the
content of the file is bogus or doesn’t meet the exact expectations of the firmware the
backup is shown as if it was empty.

Control file BACKUP.INI

The control file BACKUP.INI is a simple text file very similar to the USERFILE.INI above.
In general it follows the same rules, albeit sometimes not in a consistent way.

Header
[TITLE]
PSR-9000 BACKUP.INI
YAMAHA Corporation
[DISK NO]
DISK001
[INSTRUMENT]
PSR-9000
[VERSION]
Ver1.12
[TOTAL USER DATA SIZE]
2770276KB

Content

2 Registration banks 14

...

Footer
[DATAEND]

Again the keyboard model (PSR-9000 or 9000pro) is mentioned twice and also the OS
version, disk number and data size are present. Disks are numbered hexadecimal with
the first being DISK000 and the last disk being DISKFFF. However backups may not span
more than two disks due to the limited size of the backed up Flash ROM. This could
be confirmed with a hex-editor. The strings DISK000 and DISKFFF are the only strings
which are hard-coded into the firmware.

The following example shows the BACKUP.INI of the first disk of a two disk backup. The
real file doesn’t contain empty lines.

[BACKUP SETUP]
TOTAL FILE NUM:0
7 = SUP.bup

[BACKUP STYLE]
TOTAL FILE NUM:0
2 = STY.b01

[BACKUP OTS]
TOTAL FILE NUM:0

[BACKUP MUSIC DB]
TOTAL FILE NUM:0

[BACKUP REGIST]
TOTAL FILE NUM:0

[BACKUP MULTI PAD]
TOTAL FILE NUM:0

This is the same file from the second disk:

[BACKUP STYLE]
TOTAL FILE NUM:0
2 = STY.bFF

[BACKUP OTS]
TOTAL FILE NUM:0
5 = OTS.bup

2 Registration banks 15

[BACKUP MUSIC DB]
TOTAL FILE NUM:0
3 = MDB.bup

[BACKUP REGIST]
TOTAL FILE NUM:0
4 = REG.bup

[BACKUP MULTI PAD]
TOTAL FILE NUM:0
6 = MPD.bup

Several things can be seen. The field TOTAL FILE NUM is not used and thus can only be
zero. Each data section may only contain one file and files are numbered globally. The
following numbering scheme is expected by the firmware:

Section File number First disk Other disks
Setup 7 Present Missing
Style 2 Present Present
OTS 5 Present Present
Music DB 3 Present Present
Registration 4 Present Present
Multi Pads 6 Present Present

System settings and styles are always stored on the first disk. If the style file doesn’t
fit on disk it is splitted. Only the last disk may contain the other backup files. The file
BACKUP.INI of the first disk always contains all data sections even if they don’t have a
file on that disk. In that case the sections are empty. The following disks lack the setup
section. Even though a backup must not contain all data types there may be no section
missing in the control file.

For the Yamaha 9000pro the data files are called SUP_Pro.bup,
OTS_Pro.bup, MTS_Pro.bup instead of SUP.bup, OTS.bup, MTS-
.bup and so on. These are the only name recognized by the
firmware.

Binary files REG.bup and REG_Pro.bup

All registration banks are saved to the binary file REG.bup or REG_Pro.bup depending
on the keyboard model. No details about that files are known but the general layout is
very simple since only fixed-length records and no hierarchical trees are used. Also the
files always contain all 8 registrations of all 64 banks.

2 Registration banks 16

Position16 Amount Length Content
00 00 00 00 1 24 Start of file (PSR-9000):

00 46 8E 94 00 03 0B 0C
00 00 00 00 00 00 00 00
52 45 47 39 5F 31 30 32
Start of file (9000pro):
00 46 8E 94 00 03 B0 0C
00 00 00 00 00 00 00 00
52 45 47 39 50 31 30 30

00 00 00 18 64 3776 Registration banks
00 03 B0 18 1 4 End of file: E7 97 DD AB

Each bank consists of a 16 character name and 8 registrations:

Position16 Amount Length Content
00 00 00 00 1 16 Bank name. Filled with 0x00 or spaces 0x20

at the end.
00 00 00 10 8 470 Registrations of the bank. All registrations

of a bank must be present even if they are
empty. Empty registrations contain only a
name followed by 0x00 bytes.

The registrations have a very similar layout:

Position16 Amount Length Content
00 00 00 00 1 16 Registration name. Filled with 0x00 or

spaces 0x20 at the end.
00 00 00 10 1 454 Registration Data

No details have been explored about the registration data. There is no length field so
all registrations are of exactly the same size. No notable differences have been found
between Yamaha PSR-9000 and 9000pro created files.

2.1.4 Control file DISK.MNG

All disks which are formated on the PSR-9000 or 9000pro have a simple text file called
DISK.MNG in their root directory. It’s assumed that the file is not needed by the instru-
ment and instead is a left-over from the firmware of older instruments like the PSR-8000.
All lines are exactly 14 characters long with trailing spaces as needed and 8 lines are
present!

2 Registration banks 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 D I S K M N G
2 P S R - 9 0 0 0
3 V e r 1 . 0 0 R e v 1 . 0 0
4
5
6
7
8

2.2 Yamaha PSR-2000, PSR-1000, PSR-A1000,
PSR-2100

The Yamaha PSR-2000 and all derived models have some interesting characteristics.
Sounds, styles and most of the user interface are clearly derived from the PSR-9000 and
9000pro. Yet many reworkings and features typically associated with the Tyros product
range have been introduced with this in-between product. Most notable changes are the
new file-based access to all Flash ROM contents, the ability to play songs and styles at
the same time, dedicated song player buttons and (most important) that registration
banks are saved to individual files. Therefor all storage related functions like System
Backup and Load/Save User Data are gone in favor of a much simplified handling. The
file extension *.reg remains though.

Currently only files created at the Yamaha PSR-2000 are avail-
able. Thus no information about differences to the PSR-2100,
PSR-1000 and PSR-A1000 is known. It is assumed however that
those models are basically identical. Because of that only mini-
mal differences in the file format (like different magic bytes) are
expected.

A flat file structure is used for the general layout while registrations are made of a simple
block list. All strings are latin-1 encoded and all numbers are unsigned integers in big
endian order. Boolean values are stored as 1-byte signed integers like this:

• 0x00: 0 ⇒ False or Off

• 0x7F: 127 ⇒ True or On

The general file layout is this:

Position16 Amount Length Content
00 00 00 00 1 30 Start of file (PSR-2000):

52 45 47 2D 31 30 30 2D
31 30 30 2D 31 30 30 30
50 53 52 32 30 30 30 78

2 Registration banks 18

Position16 Amount Length Content
00 08 00 40
Most of that resembles the string
REG-100-100-1000PSR2000. The other
models are likely to have a slightly
different start sequence.

00 00 00 1C 1 4 Amount of contained registrations
00 00 00 20 8 4 Absolute position of each registration or

0xFF FF FF FF for empty slots
00 00 00 40 1 48 Unknown byte sequence or padding:

24 FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF
FF FF FF FF FF 00 00 00
00 00 00 00 00 00 00 00

00 00 00 70 0–8 variable,
usually
1568

Registration blocks

Each registration has the following structure:

Position16 Amount Length Content
00 00 00 00 1 4 Magic bytes: RGST
00 00 00 04 1 2 Unknown fixed value (maybe format num-

ber): 0x00 01
00 00 00 06 1 2 Length of the complete registration block.

Usually 0x06 20
00 00 00 08 1 104 Unknown byte sequence:

10 70 18 00 00 00 00 00
00 00 1F 80 00 00 1F D0
FF FF FF FF 00 00 1F E0
00 00 20 80 00 00 20 F0
00 00 21 60 00 00 21 D0
00 00 22 70 FF FF FF FF
00 00 22 80 00 00 22 90
FF FF FF FF 00 00 22 A0
FF FF FF FF FF FF FF FF
00 00 22 B0 00 00 23 C0
00 00 24 D0 00 00 24 F0
00 00 25 10 FF FF FF FF
FF FF FF FF FF FF FF FF

00 00 00 70 16 variable GP blocks

2 Registration banks 19

All GP blocks share the same basic layout:

Position16 Amount Length Content
00 00 00 00 1 4 Magic bytes, e.g GP00 or GP0B. The last

two characters are hexadecimal numbers be-
tween 0x00 and 0x14 but not all numbers
are used.

00 00 00 04 1 2 Length of the complete block
00 00 00 06 1 2 Fixed value: 0x00 00
00 00 00 08 1 variable Block data

Some of the blocks have been reverse-engineered so that some information about their
content is known.

GP00 Registration name
GP03 Style configuration
GP04 Main voice
GP05 Layer voice
GP06 Left voice
GP08 Transpose values
GP0B Tempo values
GP0D Multi pad volume
GP10 Selected style
GP11 Selected multi pads

Registration name:

Position16 Amount Length Content
00 00 00 00 1 4 Magic bytes: GP00
00 00 00 04 1 2 Fixed length: 0x00 50, Other values crash

the instrument while loading the registra-
tion

00 00 00 06 1 2 Fixed value: 0x00 00
00 00 00 08 1 72 Registration name as zero-terminated string

Style configuration:

Position16 Amount Length Content
00 00 00 00 1 4 Magic bytes: GP03

This block is missing if no style is selected,
e.g. if it was tried to save the registration
with a floppy style

00 00 00 04 1 2 Fixed length: x00 A0
00 00 00 06 1 2 Fixed value: 0x00 00
00 00 00 08 1 2 Unknown

2 Registration banks 20

Position16 Amount Length Content
00 00 00 0A 1 1 Boolean: Acmp On / Off
00 00 00 0B 1 1 Selected style part:

0x02: Intro, 0x22: Ending, 0x08: Main A,
0x09: Main B, 0x0A: Main C, 0x0B: Main D,
0x10: Fill A, 0x11: Fill B, 0x12: Fill C,
0x13: Fill D

00 00 00 0C 1 2 Unknown
00 00 00 0E 1 1 Style volume
00 00 00 0F 1 1 Style panorama
00 00 00 10 1 2 Unknown
00 00 00 12 1 1 Left split point. This is the midi note num-

ber + one octave. e.g. 0x48 (C5) is saved if
0x3C (C4) was selected.

00 00 00 13 1 1 Acmp split point + one octave (see above)
00 00 00 14 1 137 Unknown

Selected panel voices:

Position16 Amount Length Content
00 00 00 00 1 4 Magic bytes: GP04 for Main voice

Magic bytes: GP05 for Layer voice
Magic bytes: GP06 for Left voice

00 00 00 04 1 2 Fixed length: 0x00 70
00 00 00 06 1 2 Fixed value: 0x00 00
00 00 00 08 1 1 Boolean: Part On / Off
00 00 00 09 1 1 Selected voice MSB
00 00 00 0A 1 1 Selected voice LSB
00 00 00 0B 1 1 Selected voice Program
00 00 00 0C 1 9 Unknown
00 00 00 15 1 1 Volume
00 00 00 16 1 8 Unknown
00 00 00 1E 1 1 Panorama
00 00 00 1F 1 65 Unknown (Maybe voice editor values)
00 00 00 60 1 1 Block GP04: Octave Transpose: -1, 0 or 1

Block GP06: Left hold On / Off
00 00 00 61 1 15 Unknown, maybe only 0x00 bytes

Transpose values:

Position16 Amount Length Content
00 00 00 00 1 4 Magic bytes: GP08
00 00 00 04 1 2 Fixed length: 0x00 10
00 00 00 06 1 2 Fixed value: 0x00 00
00 00 00 08 1 1 Signed integer: Master transpose

2 Registration banks 21

Position16 Amount Length Content
00 00 00 09 1 1 Signed integer: Song transpose
00 00 00 0A 1 1 Signed integer: Keyboard transpose
00 00 00 0B 1 5 0x00 bytes

Tempo values:

Position16 Amount Length Content
00 00 00 00 1 4 Magic bytes: GP0B
00 00 00 04 1 2 Fixed length: 0x00 10
00 00 00 06 1 2 Fixed value: 0x00 00
00 00 00 08 1 2 Fixed value: 0x00 00
00 00 00 0A 1 2 Song tempo
00 00 00 0C 1 2 Style tempo
00 00 00 0E 1 2 0x00 bytes

Multi pad volume:

Position16 Amount Length Content
00 00 00 00 1 4 Magic bytes: GP0D
00 00 00 04 1 2 Fixed length: 0x00 10
00 00 00 06 1 2 Fixed value: 0x00 00
00 00 00 08 1 1 Volume
00 00 00 09 1 2 Unknown
00 00 00 0B 1 1 Panorama
00 00 00 0C 1 4 Unknown

Selected style:

Position16 Amount Length Content
00 00 00 00 1 4 Magic bytes: GP10
00 00 00 04 1 2 Fixed length: 0x01 10
00 00 00 06 1 2 Fixed value: 0x00 00
00 00 00 08 1 264 Style path as zero-terminated string.

ROM style D:/STYLE/Pop&Rock/-
HeartBeat.S119.sty, flash style in root
directory C:/STYLE/HeartBelinda.S119-
.STY, floppy Style cannot be saved!

Selected multi pads:

Position16 Amount Length Content
00 00 00 00 1 4 Magic bytes: GP11
00 00 00 04 1 2 Fixed length: 0x01 10

2 Registration banks 22

Position16 Amount Length Content
00 00 00 06 1 2 Fixed value: 0x00 00
00 00 00 08 1 264 Multi pad path as zero-terminated string,

e.g. D:/MULTI PAD/Samba Show1.S387-
.pad

2.3 Yamaha Tyros, PSR-3000, PSR-S700, PSR-S710,
PSR-S900, PSR-S910

Starting with the original Tyros many changes which were introduced earlier have been
finished. One important change is that file formats finally have stabilized enough so
that new keyboard models introduce only small differences. The registration file format
is very similar to the PSR-2000 in that individual banks are saved to files which use a
flat structure for the bank and a block list for each registration. Yet besides the general
idea all of the inner workings have been reinvented again. Also the file extension has
changed from *.reg to *.rgt.

The differences between the different arrangers are not totally un-
derstood. One reason is that example files are only available for the
Tyros range. For the other arrangers there are no or not enough
example files available.

All strings are latin-1 encoded and all numbers are unsigned integers in big endian order.
Boolean values are stored as 1-byte signed integers like this:

• 0x00: 0 ⇒ False or Off

• 0x7F: 127 ⇒ True or On

The general file layout is this:

Position16 Amount Length Content
00 00 00 00 1 16 Start of file (see below)
00 00 00 10 1 4 File size in bytes
00 00 00 14 1 44 Padding (see below)
00 00 00 40 8 variable Registration banks
–– –– –– –– 1 6 File end: 0x46 45 6E 64 0x00 00 (FEnd)

The following file headers (start of file) and are known:

Tyros 1 53 70 66 46 00 10 0A D9
52 47 53 54 00 00 00 07

2 Registration banks 23

Tyros 2 53 70 66 46 00 10 0B 75
52 47 53 54 00 02 00 00

Tyros 3 53 70 66 46 00 10 0C 12
52 47 53 54 00 02 00 02

Tyros 4 53 70 66 46 00 10 0C C1
52 47 53 54 00 02 00 03

PSR-S900 53 70 66 46 00 10 0B C6
52 47 53 54 00 02 00 00

PSR-S700 53 70 66 46 00 10 0B C7
52 47 53 54 00 02 00 00

PSR-3000 53 70 66 46 00 10 0B 20
52 47 53 54 00 01 00 02

The following paddings are known:

Tyros 1 15 5C 42 48 64 01 00 24
FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF
FF FF FF FF

Tyros 2 00 82 42 48 64 01 00 24
FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF
FF FF FF FF

Tyros 3 00 65 42 48 64 01 00 24
FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF
FF FF FF FF

Tyros 4 00 64 42 48 64 01 00 24
FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF
FF FF FF FF

PSR-S900 00 78 42 48 64 01 00 24
00 01 FF 04 05 06 07 FF
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00

2 Registration banks 24

PSR-S700 00 66 42 48 64 01 00 24
FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF
FF FF FF FF

PSR-3000 00 00 42 48 64 01 00 24
FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF
FF FF FF FF

Each registration has the following structure. Empty registrations have a length of zero
and no GPm blocks.

Position16 Amount Length Content
00 00 00 00 1 4 Magic bytes: BHd 0x00: 0x42 48 64 00
00 00 00 04 1 2 Length of the following registration data
00 00 00 06 many variable GPm blocks

All GPm blocks share the same basic layout:

Position16 Amount Length Content
00 00 00 00 1 4 Magic bytes, e.g GPm, or GPm-. The last byte

is the block number
00 00 00 04 1 2 Length of the following data
00 00 00 06 1 variable Block data

Currently no further research has been conducted about the contents of the GPm blocks.
It is only known that the first block is always block 01 which contains the registration
name:

Position16 Amount Length Content
00 00 00 00 1 4 Magic bytes: GPm 0x01
00 00 00 04 1 2 Length of the following data
00 00 00 06 1 variable Registration name without trailing spaces or

0x00 bytes

