Evolutionary Algorithms and its applications

Heinrich Braun
BA Karlsruhe

Overview

- Introduction
- Overview Optimization Methods
- Evolutionary Algorithms

Optimization in Supply Chain Management

- Supply Chain Management: Set of approaches utilized
- to integrate suppliers, manufactures, warehouses and stores
- so that merchandise is produced and distributed
- with the correct quantity
- to/from the correct locations
- at the correct time
- in order to minimize cost while satisfying service level requirements
- Prerequisite: Integrated Supply Chain Model

Plant Evolutionary Algorithms and its application

Introduction: Nature versus Engineers

- Typical Engineering Approach for Optimization
- Specify
- Model of the real world problem
- Objective Function for evaluating alternative solutions
- Optimize the free parameters of the model

Ship Design

- Typical Failure
- Model is simple enough to optimize
- But too simple for good solutions

- Mind the difference
- Engineers model with simple geometric: Straight lines, circles
- Nature is not so simple minded!!

Natural Design by famous Designer Colani (Karlsruhe)

Heinrich Braun
Evolutionary Algorithms and its application

Natural Desian bv famous Designer Colani (Karlsruhe)

Heinrich Braun
Evolutionary Algorithms and its application

Natural Design by famous Designer Colani (Karlsruhe)

Natural Design by famous Designer Colani (Karlsruhe)

Heinrich Braun
Evolutionary Algorithms and its application

Evolution of the horse foot

From Eohippus to Equus (60 Millionen Years)

Evolution of a water steam pipe in 1965

by Schwefel

Evolution of a steam pipe in 1965

1 आாाण|||யाए
 2

 тит
 5 4. 6安
7 , (0) 8 काषायायाया
 आणाणाणाण 10 आயा
 11 कातायायायायाया 2 जाण्याणाणाया

 माण|| 14 мणய||Пणயாா

 IT
 (1)
 T

 22 ஈயாய|யாய mimililumimimi
 23 आтायायायागाт

 25 --

 -

31 mimillilimomont

23

immllilimmumul

38 साप|||||1
38 आтMाillilimuminn

41 सण|

Heinrich Braun
Evolutionary Algorithms and its application

Evolution of a curvature by Rechenberg

Manuel Adjustments
-> 6 hand driven contrals

Automatic Adjustments
-> 10 robot driven controls

Evolution of a curvature by Rechenberg

Optimal 180° - solution

Optimization Methods

- Local Search
- Deterministic
- Hill Climbing
- Gradient Descent
- Tabu Search
- Probabilistic
- Simulated Annealing
- Iterated local Search

- Probabilistic
- Genetic algorithms
- Evolution Strategies

Production Planning

- Decison Variables
- $x_{A}=$ lot size for product $A \in \mid R^{+}$
- $x_{B}=$ lot size for product $B \in \mid R^{+}$
- Objective Function
- Maximize $200 x_{A}+400 x_{B}$ __Profit
- Constraints
- Assembling: $\quad 4 x_{A}+6 x_{B} \leq 120$
- Painting:

Resource consumption
Resource capacity
Problem
Linear model (objective function, constraints)
Integer solutions are NP-hard -> Branch\&Bound
Heinrich Braun
Evolutionary Algorithms and its application

Classic Operations Research

-
- Linear Model
- Linear objective function
- Linear constraint
- Efficient algorithms (Simplex Algorithm)

- Complex: modelling "integer" variables
- Optimize by relaxation
- neglecting „integer" constraint
- Search optimum in both branches
- Branch\&Bound method
- NP-hard

Detailed Production Planning

Knappsack Problem

- Decision Variables
- $x_{i,} \in\{0,1\}$
- $x_{i},=1 \Leftrightarrow$ take object i
- Objective Function
- Maximize $120 x_{1}+175 x_{2}+200 x_{3}+150 x_{4}+30 x_{5}+60 x_{6}$
- Constraint
- Limitation $20 x_{1}+35 x_{2}+50 x_{3}+50 x_{4}+15 x_{5}+60 x_{6} \leq 100$

Truck Load Building

- Decision Variables
- $x_{i,} \in\{0,1\}$
- $\mathrm{x}_{\mathrm{i},}=1 \Leftrightarrow$ load order i on the truck
- Objective function
- Maximize $10 x_{1}+20 x_{2}+50 x_{3}+200 x_{4}+150 x_{5}+250 x_{6}+150 x_{7}$
- Constraints
- Weight $0,4 x_{1}+0,7 x_{2}+0,2 x_{3}+2 x_{4}+2 x_{5}+x_{6}+3 x_{7} \leq 5$
- Volumen $0,4 x_{1}+0,2 x_{2}+3 x_{3}+4 x_{4}+3 x_{5}+5_{6}+0,9 x_{7} \leq 5$

Truck Load Building = Multidimensional Knappsack Problem

- Decision Variables
- $\mathrm{x}_{\mathrm{i},} \in\{0,1\}$
- $x_{i}=1 \Leftrightarrow$ load order i on the truck
- Objective function
- Maximize $\sum_{i} w_{i} x_{i}$
- Constraints
- Weight $\sum_{i} G_{i} x_{i} \leq G$
- Volumen $\sum_{i} V_{i} x_{i} \leq V$

Optimization Methods

- Local Search
- Deterministic
- Hill Climbing
- Gradient Descent
- Tabu Search
- Probabilistic
- Simulated Annealing
- Iterated local Search
- Global Search
- Deterministic
- Linear Optimization \checkmark
- Branch\&Bound, Divide\&Conquer \checkmark
- Dynamic Programming
- Probabilistic
- Genetic algorithms
- Evolution Strategies

Gradient Descent gradient $f(x)=\left(\frac{\partial f(x)}{\partial x_{1}}, \frac{\partial f(x)}{\partial x_{2}}, \ldots, \frac{\partial f(x)}{\partial x_{n}}\right)$

- Initialization

X := random solution

- Improvement Loop
$X^{\prime}:=X+\delta^{*}$ gradient $f(x)$
If $f\left(X^{\prime}\right)<f(X)$
Then $X:=X^{\prime}$
Else Stop \{local optimum\}

Hill Climbing

- Initialization

X := random solution

- Improvement Loop
X^{\prime} := Best of Neighbor (x)
If $f\left(X^{\prime}\right)<f(X)$
Then
X:=X
Else Stop \{local optimum\}

Probabilistic Hill Climbing

- Initialization

X := random solution

- Improvement Loop
X^{\prime} := Best of random Neighbor (x) If $f\left(X^{\prime}\right)<f(X)$

Then $X:=X^{\prime}$
Else Stop \{local optimum\}

Iterated Local Search

- Iterate until time out:
- Initialization

X := random solution

- Improvement Loop
X^{\prime} := Best of random Neighbor (x) If $f\left(X^{\prime}\right)<f(X)$

Then $\quad X:=X^{\prime}$
Else Stop \{local optimum\}

Evolution

- Iterate until time out:
- Initialization Population P

P := random solutions

- Improvement Loop

Generate offsprings (P)
$P:=$ select best of offsprings (P) „survival of the fittest"

Optimization Methods

- Local Search
- Deterministic
- Hill Climbing \checkmark
- Gradient Descent \checkmark
- Tabu Search
- Probabilistic
- Simulated Annealing
- Iterated local Search \checkmark
- Global Search
- Deterministic
- Linear Optimization \checkmark
- Branch\&Bound, Divide\&Conquer \checkmark
- Dynamic Programming
- Probabilistic
- Genetic algorithms
- Evolution Strategies

Inspiration from nature

Darwin's prinziple of natural evolution:

survival of the fittest

in populations of individuals (plants, animals), the better the individual is adapted to the environment, the higher its chance for survival and reproduction.

Analogies

Natural evolution

- individual
- environment
- fitness/how well adapted
- survival of the fittest
- mutation
- crossover

Evolutionary algorithms

- potential solution
- problem
- cost/quality of solution
- good solutions are kept
- small, random perturbations
- recombination of partial solutions

How are new individuals created?

- by sexual reproduction, i.e.
- two individuals are selected (randomly, or actively through competition etc.,...),
- a new individual is created based on the two parent's genetic material (recombination/crossover)
- by mutation, i.e. random change of
- specific genes
- the structure of chromosomes

Important principles in evolution

- Exploration: Increase diversity by
- sexual reproduction (recombination/crossover)
- mutation
- Exploitation: Reduce diversity by
- selecting good parents
- survival of the fittest

Major design decisions

- representation
- fitness function
- mutation operator
- crossover and mutation probabilities
- selection operator
- reproduction scheme
- crossover operator / recombination
- population size
- stopping criterion

Standard Representation

- Bit String
- $x=b_{1} b_{2} \ldots b_{n}$ with $b_{i} \in\{0,1\}$
- Similar to genetic representations
- Difference: Chromosoms use an alphabet with 4 letters
- Real-valued Vector
- $x=x_{1} x_{2} \ldots x_{n}$ with $x_{i} \in \mid R$
- Favorable for engineering applications
- Universal Reprentations
- Digital = Bit string
- Analog = Real-valued Vector
- Confer: MP3- Encoding

Evolutionary Algorithm

INITIALIZE population
(set of solutions)

EVALUATE Individuals

according to goal ("fitness")
REPEAT
SELECT parents
RECOMBINE parents (CROSSOVER)
MUTATE offspring
EVALUATE offspring
FORM next population
UNTIL termination-condition

Unified Model

Mutation - one parent

- Standard mutation operators
- Bit string (e.g. $x=b_{1} b_{2} \ldots b_{n}$ with $b_{i} \in\{0,1\}$) flip each bit with probability p_{m},
i.e.

$$
y_{i}=\left\{\begin{array}{cc}
1-x_{i} & \text { with probability } \\
x_{i} & \text { otherwise }
\end{array} \quad p_{m}\right.
$$

- Real-valued vector (e.g. $x=x_{1} x_{2} \ldots x_{n}$ with $\left.x_{i} \in \mid R\right)$
- Input: \vec{x}
- Output: \vec{y} with $y_{i}=\left\{\begin{array}{cc}x_{i}+v_{i}, v_{i} \in N\left(0, \sigma^{2}\right) & \text { with probability } \\ x_{i} & p_{m} \\ \text { otherwise }\end{array}\right.$
- Difficulty: how to select mutation probability p_{m} and mutation step size σ ?

Gaussian random number v_{i} for mutation of variable x_{i}

Crossover - Two Parents

Exchange genes of the genotypes

Variants of evolutionary algorithms

- Genetic algorithms (Holland 1965 and Goldberg 1989)
- binary representations
- main focus on crossover, mutation only with minor role
- Evolution strategies (Rechenberg and Schwefel 1965)
- real-valued representation
- mutation as primary operator
- self-adaptive mutation

Example: Traveling Salesperson Problem (TSP)

- Given: a set of cities $C=\left\{c_{1}, . . c_{N}\right\}$ and a distance function $d\left(c_{1}, c_{2}\right)$ that defines the distance for all possible paths from city c_{i} to city c_{j}.
- Goal: find a permutation of cities π which minimizes the total tour length

$$
\sum_{i=1}^{N-1} d\left(c_{\pi(i)}, c_{\pi(i+1)}\right)+d\left(c_{\pi(N)}, c_{\pi(1)}\right)
$$

- Representation
- Digital: Permutation, e.g. (1-4-6-5-2-3)
- Analog: Preferences, e.g. (1.8, 0/3, 0/2, 1/2, o.5, o./ $)$

Special mutation for Traveling Salesman Problem

- Permutation Representation
- $\pi(1) \pi(2) \pi(3) \ldots \pi(n) \quad \pi(i)=$ city visited in position i
- e.g. 1-4-6-5-2-3
- Mutation Operators
- Swap
- exchange two cities
- e.g. 1-2-6-5-4-3
- Insert
- remove one city and insert it at another position
- e.g. 1-6-5-2-4-3
- Inversion
- select a random subtour and inverse the order of these cities
- e.g. 1-4-2-5-6-3

Neighborhood Idea for mutation

- Focus mutation on promising changes
- Exchange similar partners (neighbors)
- No disruptive changes
- Example
- Traveling Salesman Problem
- Magic Square
- Mutation Operators
- Swap (Magic Square)
- exchange two neighboring numbers
- e.g. 1-2-6-5-4-3
- Insert (TSP)
- remove one city and insert it at another position of a neighboring city
- e.g. 1-6-5-2-4-3
- Inversion (TSP)
- select a random subtour with neighboring ends and inverse the order of these cities
- e.g. 1-4-2-5-6-3

Local optimization of each solution generated

- Domain Reduction: Search on local optimas
- Required: fast local optimizer
- removes "obvious" flaws from the offsprings
- Effect on the fitness landscape: smoothing

Local optimization of each solution generated

- Domain Reduction: Search on local optimas
- Required: fast local optimizer
- removes "obvious" flaws from the offsprings
- Effect on the fitness landscape: smoothing
- Cf. Hillclimbing in the Swiss alps or Spanish Pyrenees

Mutation probability and step size

- For some simple problems
- mutation rate of $1 / n$ is optimal
- n : chromosome length
- $1 / 5$ rule
- 1/5 of mutations should be successful (generate a superior solution)
- increase step size, If rate of successful offspring $>1 / 5$,
- decrease step size, If rate of successful offspring < 1/5,
- danger of getting stuck in a local minimum, as mutation rate is decreased there
- self-adaptive mutation
- expand genotype by control information
- Step size

M. Mutation probability and step size - 1/5-rule

Area of improvements

Heinrich Braun
EVolutionary Algorithms and its application

Berechnungder optimalen "Schrittweite" von Rechenberg

(1+1)-Evolutionsstrategie: 1/5-Erfolgsregel

Self-adaptive mutation

- Extend genotype by strategy parameters
- These strategy parameters are also subject to evolution
- Simplest example: only one strategy parameter defining the mutation step size (same in every dimension)

$$
x=\left(x_{1}, x_{2}, \ldots, x_{n}, \sigma\right) \text { with } x_{i} \in \mathfrak{R}
$$

```
procedure self-adaptive mutation
Input: Individual }x=(\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\ldots,\mp@subsup{x}{n}{},\mp@subsup{\sigma}{x}{}
begin
    \sigma
    for i=1 to n do
        \mp@subsup{y}{i}{}\leftarrow\mp@subsup{x}{i}{}+N(0,\mp@subsup{\sigma}{y}{2})
    end //for
    Output: Individual }y=(\mp@subsup{y}{1}{},\mp@subsup{y}{2,}{},\ldots,\mp@subsup{y}{n}{},\mp@subsup{\sigma}{y}{}
```

end

- Remark: it is possible to extend self-adaptation to allow independent mutation step sizes in every dimension. Note, however, that with an increasing number of strategy parameters, self-adaptation becomes slower and slower.

1 strategy parameter

d strategy parameters

$d(d+1) / 2$ strategy parameters

Crossover

- Main idea
- combine partial solutions of parents
- to form new, promising solution
- Try to use as much information from the parents as possible
- Refinement
- similar considerations as neighborhood move operator
- rather problem specific

Standard crossover

- Exchange genes of the genotypes
- One point crossover:

- Assumption: closely related information should be encoded closely together on the genotype, since this reduces the probability of disruption (cf. Schema Theorem)
- Alternatives with smaller dependence on ordering of genes:
- two point crossover

- uniform crossover (decide for each gene from which parent it is chosen)

Special crossover for real values

Let x_{i}, y_{i} be the i-th gene of the two parent individuals x and y

- Arithmetic crossover: $z_{i}=\lambda_{i} x_{i}+\left(1-\lambda_{i}\right) y_{i}, \quad \lambda_{i} \in[0-\varepsilon, 1+\varepsilon]$
- ε determines degree of extrapolation
- if $\quad \lambda_{i}=\lambda_{j}=\lambda \quad \forall i, j \quad$ restricted to line between x and y
- Discrete Crossover
- $z_{i}=x_{i}$ or y_{i}
- Random recombination of the parental genes

Special crossover for TSP

- Order crossover (OX)
- select partial sequence from one parent, fill up in order of other parent

- Partially mapped crossover (PMX)
- select partial sequence from one parent, fill up from other parent, resolve conflicts by mapping defined by partial sequence

move without conflict mapping 4-8, 5-3, 7-1
- Edge recombination crossover (ERX)
- idea: maintain as many edges from parents as possible (ERX achieves 95\% usage of old edges)
- computationally more expensive

```
procedure edge recombination crossover
Ex
E
U:= {1,2,3,...n} // list of all unvisited cities
begin
    select first city c(0) randomly from {i||Ei|= min | | E | |
    for t:=0 to n-2 do
        U\leftarrowU\{C(t)}
        if (|E E c(t)}|>0) // parental edge can be used
        select c(t+1) randomly from {i|(|\mp@subsup{E}{i}{}|=\mp@subsup{\operatorname{min}}{j\inU}{|}|\mp@subsup{E}{j}{}|)\wedge((i,c(t))\in\mp@subsup{E}{c(t)}{})}
        else
            select c(t+1) randomly from {i||E
        end //if
        remove (c(t),i) from all edge sets E E if contained
    done
end
```


Preferring better individuals

- Necessary to advance the search
- Selection pressure
- too high: loss of diversity, risk of getting stuck in local optimum
- too low: no search focus, similar to random search
- Two aspects:
- preferring better individuals when selecting the parents (usually termed selection step)
- preferring better individuals when deciding who survives to the next generation (usually termed the reproduction scheme)

Reproduction schemes (who survives to next generation)

- (μ, λ)-selection

Evolutionsstrategien

- from μ parents, generate λ children
- the best μ out of the λ children forms the next parent generation
- $(\mu+\lambda)$-selection
- from μ parents, generate λ children
- the best μ out of the combined μ parent and λ child individuals form the next parent generation
- Generational reproduction ($\cong(\mu, \mu)$-selection) Genetische Algorithmen
- generate n children, the children replaces the parent generation
- usually with elitism, i.e. the best solution found so far survives
- Steady-state reproduction ($\cong(\mu+1)$-selection)
- in each iteration, select only two parents, generate one child
- the child replaces the worst individual in the population.
- Hillclimbing ($\cong(1+\lambda)$-selection)

Selection probabilities

Let p_{i} : probability of individual i to be selected as parent
f_{i} : fitness of individual i

- Fitness proportional selection
- most common selection scheme for early GAs

$$
p_{i}=\frac{f_{i}}{\sum f_{j}}
$$

- assumes maximization problem and positive fitness values
- $f(x)$ und $f(x)+c$ are handled differently
- if fitness values are all very large, basically no selection pressure
- basically no selection pressure towards the end of the run (when all individuals are similar)
- super-individual can take over population quickly (reduced diversity)
- some pitfalls can be avoided by using normalized fitness values, e.g.
- subtract minimum fitness value,
but: influence of worst individual becomes very high

$$
f_{i}^{\prime}=\frac{f_{i}-f_{\text {worst }}}{f_{\text {best }}-f_{\text {worst }}}
$$

Rank-based selection

Instead of considering fitness values, consider ranks

- Linear ranking selection
- sort individuals
- if $r_{i} \in[1 \ldots n]$ is the rank of individual i, select individuals according to

$$
p_{i}=\frac{b}{n}-\left(\frac{2 b-2}{n}\right)\left(\frac{r_{i}-1}{n-1}\right)
$$

p_{i}

rank

- constant selection pressure defined by $b \in[1,2]$
- Tournament selection
- randomly choose t individuals from the population (usually $t=2$)
- select the better one as parent
- easy to implement, efficient to compute (no sorting)
- same expected probabilities as linear ranking selection with $b=2$

Sampling

- Determining an individual's selection probability, and actually choosing the parents (sampling) are two different things.
- When parents are sampled independently, variance may be high (it is possible that the worst individual is selected n times) high genetic drift
- Genetic Drift: Sampling error due to stochastic nature of selection and finite population size (decreases with increasing population size).

Ind.	f_{i}	p_{i}	a_{i}	$E_{i}=p_{i}{ }^{*} n$
1	6.0	0.39	0	2.34
2	3.4	0.22	0	1.32
3	2.5	0.16	0	0.96
4	1.7	0.11	0	0.66
5	1.2	0.08	0	0.48
6	0.6	0.04	6	0.24
	$\sum=15.4$	$\sum=1.0$	$\sum=6$	$\sum=6.0$

with probability $4.1 * 10^{-9}$

Stochastic Universal Sampling

- General idea:
- generate one random variable $v \in[0,1]$,
- select n individuals sequentially:
for each $\mathrm{k} \in\{0,1, . ., \mathrm{n}\}$ select the individual i , if: $\sum_{k=1}^{i} p_{k} \leq v+\mathrm{k} / \mathrm{n}-\lfloor v+\mathrm{k} / \mathrm{n}\rfloor<\sum_{k=1}^{i+1} p_{k}$

- each individual is selected at least $\left\lfloor n_{i}\right\rfloor$ and at most $\left\lceil n p_{i}\right\rceil$ times
- only one random variable has to be generated to select n individuals

Population size

- If too small
- not enough diversity in population for crossover to be useful
- premature convergence
- If too large
- slow convergence (in terms of fitness evaluations)
- Rule of thumb: 10 - 30

Stopping criteria

- low diversity in population (e.g. avg. fitness = best fitness)
- maximum number of iterations
- no improvement for k iterations

