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Optimization in Supply Chain Management

DCPlantSupplier Customer

Supply Chain Management: Set of approaches utilized
to integrate suppliers, manufactures, warehouses and stores
so that merchandise is produced and distributed

with the correct quantity
to/from the correct locations 
at the correct time

in order to minimize cost while satisfying service level requirements
Prerequisite: Integrated Supply Chain Model
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Introduction: Nature versus Engineers

Typical Engineering Approach for Optimization
Specify

Model of the real world problem
Objective Function for evaluating alternative solutions

Optimize the free parameters of the model

Typical Failure
Model is simple enough to optimize
But too simple for good solutions

Mind the difference
Engineers model with simple geometric: Straight lines, circles
Nature is not so simple minded!!

Optimize (α1, α2, )

α2α1

Ship Design
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Natural Design by famous Designer Colani (Karlsruhe)
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Natural Design by famous Designer Colani (Karlsruhe)
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Natural Design by famous Designer Colani (Karlsruhe)
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Natural Design by famous Designer Colani (Karlsruhe)
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From Eohippus to Equus (60 Millionen Years)

Evolution of the horse foot
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by Schwefel

Evolution of a water steam pipe in 1965
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Evolution of a steam pipe in 1965
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Manuel Adjustments

->  6 hand driven contrals

1965

1980

Evolution of a curvature by Rechenberg

Automatic Adjustments

->  10 robot driven controls
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Evolution of a curvature by Rechenberg

Optimal 180°- solution

Start Result of Evolution

Start Result of Evolution

Optimal 90°- solution
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Optimization Methods

Global Search
Deterministic

Linear Optimization
Branch&Bound, Divide&Conquer
Dynamic Programming

Probabilistic
Genetic algorithms
Evolution Strategies

Local Search
Deterministic

Hill Climbing
Gradient Descent
Tabu Search

Probabilistic
Simulated Annealing
Iterated local Search

model too simpel

exponential time 
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Production Planning

Decison Variables
xA = lot size for product A  ∈|R+

xB = lot size for product B  ∈|R+

Objective Function
Maximize 200xA +  400xB

Constraints
Assembling: 4xA + 6xB ≤ 120 
Painting: 2xA + 6xB ≤ 72   

Resource consumption Resource capacity

Profit

Problem
Linear model (objective function, constraints)
Integer solutions are NP-hard ->  Branch&Bound
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Classic Operations Research

Linear Model
Linear objective function
Linear constraint
Efficient algorithms (Simplex Algorithm)

Complex: modelling “integer” variables
Optimize by relaxation

neglecting „integer“ constraint
Search optimum in both branches

Branch&Bound method
NP-hard

x≤ k x ≥ k+1
Min

x

x

F(x)

k k+1
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Detailed Production Planning
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Knappsack Problem

Decision Variables
xi, ∈ {0,1} 
xi, = 1    take object i

Objective Function

Maximize 120 x1  + 175x2  + 200 x3  + 150 x4  + 30 x5  + 60 x6 

Constraint

Limitation 20x1  + 35x2  + 50 x3  + 50 x4  + 15 x5  + 60x6 ≤ 100
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Truck Load Building

Decision Variables
xi, ∈ {0,1} 
xi, = 1  load order i  on the truck

Objective function

Maximize10 x1  + 20x2  + 50 x3  + 200 x4  + 150 x5  + 250 x6 + 150 x7 

Constraints

Weight 0,4 x1  + 0,7x2  + 0,2 x3  + 2 x4  + 2 x5  + x6 + 3 x7 ≤ 5

Volumen 0,4 x1  + 0,2 x2  + 3 x3  + 4 x4  + 3 x5  + 56 + 0,9 x7 ≤ 5
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Truck Load Building
= Multidimensional Knappsack Problem

Decision Variables
xi, ∈ {0,1} 
xi, = 1  load order i  on the truck

Objective function

Maximize Σi wi xi

Constraints

Weight ∑i Gi xi ≤ G
Volumen ∑i Vi xi ≤ V
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Optimization Methods

Global Search
Deterministic

Linear Optimization

Branch&Bound, Divide&Conquer
Dynamic Programming

Probabilistic
Genetic algorithms
Evolution Strategies

Local Search
Deterministic

Hill Climbing
Gradient Descent
Tabu Search

Probabilistic
Simulated Annealing
Iterated local Search
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Gradient Descent

Initialization
X := random solution

Improvement Loop
X´ := X +   δ* gradient f (x)
If f(X´) < f(X)

Then X:=X´
Else Stop {local optimum}
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Hill Climbing

Initialization
X := random solution

Improvement Loop
X´ := Best of Neighbor (x)
If f(X´) < f(X)

Then X:=X´
Else Stop {local optimum}

0

1P

P
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Probabilistic Hill Climbing

Initialization
X := random solution

Improvement Loop
X´ := Best of random Neighbor (x)
If f(X´) < f(X)

Then X:=X´
Else Stop {local optimum}

E

NP

P
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Iterated

Iterate until time out:

Initialization
X := random solution

Improvement Loop
X´ := Best of random Neighbor (x)
If f(X´) < f(X)

Then X:=X´
Else Stop {local optimum}

Local Search
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Iterate until time out:

Initialization Population P
P := random solutions

Improvement Loop
Generate offsprings (P)
P := select best of offsprings (P)  

„survival of the fittest“

Evolution
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Optimization Methods

Global Search
Deterministic

Linear Optimization

Branch&Bound, Divide&Conquer
Dynamic Programming

Probabilistic
Genetic algorithms
Evolution Strategies

Local Search
Deterministic

Hill Climbing

Gradient Descent
Tabu Search

Probabilistic
Simulated Annealing

Iterated local Search
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Inspiration from nature

Darwin’s prinziple of natural evolution:
survival of the fittest
in populations of individuals (plants, animals), the better the individual is adapted to the 
environment, the higher its chance for survival and reproduction. 

evolving population environment
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Analogies

Natural evolution
individual
environment
fitness/how well adapted
survival of the fittest
mutation
crossover

Evolutionary algorithms
potential solution
problem
cost/quality of solution
good solutions are kept
small, random perturbations
recombination of partial solutions

population of
individuals

environment
population of
solutions problem

13245
13542

15342

13254

31542
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How are new individuals created?

by sexual reproduction, i.e.
two individuals are selected
(randomly, or actively through competition etc.,...),

a new individual is created based on the two parent‘s genetic material 
(recombination/crossover)

by mutation, i.e. random change of 
specific genes
the structure of chromosomes
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Important principles in evolution

Exploration: Increase diversity by
sexual reproduction (recombination/crossover)
mutation

Exploitation: Reduce diversity by 
selecting good parents
survival of the fittest
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Major design decisions

representation
fitness function

mutation operator
crossover and mutation probabilities
selection operator
reproduction scheme
crossover operator / recombination
population size
stopping criterion
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Standard Representation

Bit String
x = b1b2…bn with bi∈{0,1}
Similar to genetic representations
Difference: Chromosoms use an alphabet with 4 letters

Real-valued Vector
x = x1x2…xn with xi∈|R
Favorable for engineering applications

Universal Reprentations
Digital = Bit string
Analog = Real-valued Vector
Confer: MP3- Encoding
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P

D
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G=Genotype
S = feasible solutions

P=Phenotype
D = Domain 

ℜ
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INITIALIZE population
(set of solutions)

REPEAT

UNTIL termination-condition

EVALUATE Individuals
according to goal ("fitness")

SELECT parents

RECOMBINE parents (CROSSOVER)

MUTATE offspring

EVALUATE offspring

2 10
1

7

27

5
12

8

14 9 17 4

9 10

17
7

47

14
12

8FORM next population

Evolutionary Algorithm
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Unified Model

Memory New
Solutions

Update

Construct

Population

Selection, crossover
and mutation

New
Solutions

Insert new individuals
into the population
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Mutation   - one parent

Standard mutation operators
Bit string (e.g. x = b1b2…bn with bi∈{0,1})
flip each bit with probability pm,
i.e.

Real-valued vector (e.g. x = x1x2…xn with xi∈|R )
Input: 

Output:      with

Difficulty: how to select mutation probability pm and mutation step size σ?

  
r 
x 

  
r 
y 

 
y i =

x i + v i ,  v i ∈ N ( 0 ,σ 2 )

x i

  with probability p m  
otherwise

⎧ 
⎨ 
⎩ 

 
y i =

1 − x i

x i

 with probability p m

otherwise
⎧ 
⎨ 
⎩ 
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Gaussian random number νi for mutation of variable xi

νi

Probability w
2

22
1

e
2
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υ
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−

π
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0

2σ

+

Point of curvature
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Crossover    - Two Parents

Exchange genes of the genotypes

Parents Offsprings
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Variants of evolutionary algorithms

Genetic algorithms (Holland 1965 and Goldberg 1989)
binary representations
main focus on crossover, mutation only with minor role

Evolution strategies (Rechenberg and Schwefel 1965)
real-valued representation
mutation as primary operator
self-adaptive mutation
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Given: a set of cities C = {c1,..cN} and a distance function d(c1,c2) that 
defines the distance for all possible paths from city ci to city cj.

Goal: find a permutation of cities π which minimizes the
total tour length

Representation
Digital: Permutation, e.g. (1 – 4 – 6 – 5 – 2 – 3)
Analog: Preferences, e.g. (1.8, 0.3, 0.2, 1.2, 0.5, 0.7)

d(cπ (i ) ,cπ (i+1) ) +
i=1

N −1

∑ d(cπ (N ) ,cπ (1) )

Example: Traveling Salesperson Problem (TSP)

1

2

3

4

56
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Permutation Representation 
π(1) π(2) π(3) … π(n)   π(i) = city visited in position i
e.g. 1-4-6-5-2-3

Mutation Operators 
Swap

exchange two cities 
e.g. 1-2-6-5-4-3

Insert
remove one city and insert it at another position 
e.g. 1-6-5-2-4-3

Inversion
select a random subtour and inverse the order of these cities 
e.g. 1-4-2-5-6-3

Special mutation for Traveling Salesman Problem 
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Focus mutation on promising changes
Exchange similar partners (neighbors)
No disruptive changes

Example 
Traveling Salesman Problem
Magic Square

Mutation Operators 
Swap (Magic Square)

exchange two neighboring numbers
e.g. 1-2-6-5-4-3

Insert (TSP)
remove one city and insert it at another position of a neighboring city
e.g. 1-6-5-2-4-3

Inversion (TSP)
select a random subtour with neighboring ends and inverse the order of these cities 
e.g. 1-4-2-5-6-3

Neighborhood Idea for mutation
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Local optimization of each solution generated

Domain Reduction: Search on local optimas
Required: fast local optimizer
removes “obvious” flaws from the offsprings
Effect on the fitness landscape: smoothing 

mutation

local optimization
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Local optimization of each solution generated

Domain Reduction: Search on local optimas
Required: fast local optimizer
removes “obvious” flaws from the offsprings
Effect on the fitness landscape: smoothing 
Cf. Hillclimbing in the Swiss alps or Spanish Pyrenees

mutation

local optimization
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Mutation probability and step size

For some simple problems
mutation rate of 1/n is optimal
n: chromosome length

1/5 rule
1/5 of mutations should be successful (generate a superior solution)
increase step size, If   rate of successful offspring   > 1/5,
decrease step size, If   rate of successful offspring   < 1/5,
danger of getting stuck in a local minimum, as mutation rate is decreased 
there

self-adaptive mutation
expand genotype by control information
Step size



Heinrich Braun                       Evolutionary Algorithms and its application 47

Mutation probability and step size – 1/5-rule

too small optimal too large

Area of improvements

Optimum

Parent
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0

0,1

0,2

0,3

0,4

0 0,1 0,2 0,3 0,4 0,5
We

* Korridormodell

Kugelmodell

(1+1)-Evolutionsstrategie:  1/5-Erfolgsregel

1/6 1/5 1/4

Berechnungder optimalen “Schrittweite” von Rechenberg
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Self-adaptive mutation

Extend genotype by strategy parameters
These strategy parameters are also subject to evolution
Simplest example: only one strategy parameter defining the mutation step 
size (same in every dimension)

 x = (x1,x2,..., xn ,σ ) with xi ∈ ℜ

procedure self-adaptive mutation

Input: Individual 

begin

where u~N(0,1)

for i=1 to n do

end //for

Output: Individual

end

σ y ← σ x exp u / n( )

x = (x1,x2,..., xn ,σ x )

yi ← xi + N (0,σ y
2 )

y = (y1,y2,..., yn ,σ y )
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Remark: it is possible to extend self-adaptation to allow independent 
mutation step sizes in every dimension. Note, however, that with an 
increasing number of strategy parameters, self-adaptation becomes slower 
and slower.

1 strategy parameter d strategy parameters d(d+1)/2 strategy parameters
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Crossover

Main idea
combine partial solutions of parents 
to form new, promising solution

Try to use as much information from the parents as possible

Refinement
similar considerations as neighborhood move operator
rather problem specific
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Standard crossover

Exchange genes of the genotypes
One point crossover:

Assumption: closely related information should be encoded closely together on the 
genotype, since this reduces the probability of disruption (cf. Schema Theorem)
Alternatives with smaller dependence on ordering of genes: 

two point crossover

uniform crossover (decide for each gene from which parent it is chosen)
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Special crossover for real values

Let xi, yi be the i-th gene of the two parent individuals x and y
Arithmetic crossover:

ε determines degree of extrapolation
if restricted to line between x and y

Discrete Crossover
zi = xi or yi

Random recombination of the parental genes

 zi = λ i xi + (1− λ i )yi ,   λ i ∈ [0 − ε,1+ ε ]

  λ i = λ j = λ   ∀i, j
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Special crossover for TSP

Order crossover (OX)
select partial sequence from one parent, fill up in order of other parent

123456789 942863157

4567928 31

Partially mapped crossover (PMX)
select partial sequence from one parent, fill up from other parent, resolve 
conflicts by mapping defined by partial sequence

123456789 942863157

45679  2

move without conflict

mapping 4-8, 5-3, 7-1982 31
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Edge recombination crossover (ERX)
idea: maintain as many edges from parents as possible 
(ERX achieves 95% usage of old edges)
computationally more expensive

procedure edge recombination crossover

Ex:= edges from parent x, Ey:= edges from parent y

Ei:= {e∈Ex∪Ey|e is incident to city i} 

U:= {1,2,3,…,n} // list of all unvisited cities

begin

select first city c(0) randomly from

for t:=0 to n-2 do

U ←U \{c(t)}

if (|Ec(t)|>0)  // parental edge can be used

select c(t+1) randomly from

else

select c(t+1) randomly from

end //if

remove (c(t),i) from all edge sets Ei if contained

done

end

{i | ( Ei = min
j∈U

E j )∧ ((i,c(t )) ∈ Ec( t ) )}

{i | Ei = min
j

E j }

{i | Ei = min
j∈U

E j }
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Preferring better individuals

Necessary to advance the search
Selection pressure

too high: loss of diversity, risk of getting stuck in local optimum
too low: no search focus, similar to random search

Two aspects:
preferring better individuals when selecting the parents (usually termed 
selection step)
preferring better individuals when deciding who survives to the next 
generation (usually termed the reproduction scheme)
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Reproduction schemes (who survives to next generation)

(µ,λ)-selection
from µ parents, generate λ children
the best µ out of the λ children forms the next parent generation

(µ+λ)-selection
from µ parents, generate λ children
the best µ out of the combined µ parent and λ child individuals form the 
next parent generation

Generational reproduction (≅ (µ, µ)-selection )
generate n children, the children replaces the parent generation
usually with elitism, i.e. the best solution found so far survives

Steady-state reproduction (≅ (µ+1)-selection )
in each iteration, select only two parents, generate one child
the child replaces the worst individual in the population.

Hillclimbing (≅ (1+λ)-selection )

Evolutionsstrategien

Genetische Algorithmen
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Selection probabilities

Let pi: probability of individual i to be selected as parent
fi: fitness of individual i

Fitness proportional selection
most common selection scheme for early GAs
assumes maximization problem and positive fitness values
f(x) und f(x)+c are handled differently
if fitness values are all very large, basically no selection pressure
basically no selection pressure towards the end of the run (when all individuals are 
similar)
super-individual can take over population quickly (reduced diversity)
some pitfalls can be avoided by using normalized fitness values, e.g.

subtract minimum fitness value, 
but: influence of worst individual becomes very high

pi = fi

f j∑

f 'i = fi − fworst

fbest − fworst
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Rank-based selection

Instead of considering fitness values, consider ranks
Linear ranking selection

sort individuals
if is the rank of individual i, select individuals according to

constant selection pressure defined by b∈[1,2]

Tournament selection
randomly choose t individuals from the population (usually t=2)
select the better one as parent
easy to implement, efficient to compute (no sorting)
same expected probabilities as linear ranking selection with b=2

rank

pi
pi = b

n
− 2b − 2

n

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

ri −1
n −1

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

ri ∈ [1...n]
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Sampling

Determining an individual’s selection probability, and actually 
choosing the parents (sampling) are two different things.
When parents are sampled independently, variance may be high (it is 
possible that the worst individual is selected n times) high genetic 
drift
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Genetic Drift: Sampling error due to stochastic nature of selection and finite population 
size (decreases with increasing population size).

∑=6

1

0

1

2

1

1

ai

∑=1.0∑=15.4

0.040.66

0.081.25

0.111.74
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0.223.42

0.396.01

pifiInd.

∑=6

6

0

0

0

0

0

ai

∑=6.0∑=1.0∑=15.4

0.240.040.66

0.480.081.25

0.660.111.74

0.960.162.53

1.320.223.42

2.340.396.01

Ei=pi*npifiInd.

∑=6

1

0

1

2

1

1

ai

∑=6.0∑=1.0∑=15.4

0.240.040.66

0.480.081.25

0.660.111.74

0.960.162.53

1.320.223.42

2.340.396.01

Ei=pi*npifiInd.

with probability 4.1*10-9



Heinrich Braun                       Evolutionary Algorithms and its application 62

Stochastic Universal Sampling

General idea: 
generate one random variable ν∈[0,1], 
select n individuals sequentially: 
for each k∈{0,1,..,n} select the individual i, if:           i≤ ν+k/n - ⎣ν+k/n⎦ < 

each individual is selected at least ⎣npi⎦ and at most  ⎡npi⎤ times
only one random variable has to be generated to select n individuals

∑
=

i

k
kp

1
∑

+

=

1

1

i

k
kp
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Population size

If too small
not enough diversity in population for crossover to be useful
premature convergence

If too large
slow convergence (in terms of fitness evaluations)

Rule of thumb: 10 – 30 
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Stopping criteria

low diversity in population (e.g. avg. fitness = best fitness)
maximum number of iterations
no improvement for k iterations


